干涉型计算机产生的全息图 检验非球面镜

施志果 徐德衍 江健忠 宋德忠 周忠益

(中国科学院上海光机所)

提要:本文介绍干涉型计算机产生的全息图。提出了作图的新方法——条纹序 号法,分析了记录平面上的位相分布和近似计算公式的适用范围,给出了计算机全息 图质量自检的一套完整的照片,和用它检验一抛物面镜的实验结果。

Aspheric mirror inspection by interference type computer generated hologram

Shi Zhiguo Xu Deyan Jiang Jianzhong Song Dezhong Zhou Zhongyi

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: This paper describes the interference type computer generated hologram. A new calculating and drawing method the fringe order method is proposed. The phase distribution on recording plane and the reasonable range of approximate calculation are discussed. A set of photos for testing the quality of CGH and the experimental results in testing a parabolic mirror using CGH are given.

一、干涉型计算机产生的 全息图——干涉型 CGH

A. W. Lohmann 在 1967 年⁽¹⁾提出了计 算机产生的全息图 CGH, 并已被用于检验 光学系统中的非球面^[2~4]。K. G. Birch 和 F. J. Green^[3]在1972年提出了干涉型 CGH, 它是光学全息摄影和 Lohmann 型 CGH 的 综合产物。

设有非球面波面 WAR 沿 z 轴传播,如 图 1 所示。它在记录干板上的 位 相 分 布 为 WAR(x, y)_y; 另有一平面波 WO,它在记录 干板上的位相分布为 Ao+A1x。两个波面在 干板处相会,产生干涉条纹,干涉条纹的峰值 位置应满足下式:

 $A_0 + A_1 x - WAR(x, y)_p = m \cdot \lambda$ (1) 式中 m 是整数。将干板显影定影后,我们就 得到光学全息图。再用平面波 WO 照明这张 全息图,就能得到再现波面 WAR。

在用计算机产生的全息图 CGH 去检验 非球面光学表面时, WAR 就是参考 波 面或 叫样板波面,这实际上是不存在的,但是可以 用数学公式来表达出来。因此,我们可以用 方程式(1)由计算机算出干涉条纹的峰值位

收稿日期: 1980年6月27日。

• 42 •

图1 全息图的产生

置轨迹。由计算机控制的画图仪画出此干涉 图——全息图,再用缩微照相的方法把它缩 小到所需要的精确的尺寸,从而得到计算机 产生的全息图 CGH。以平面波 WO 照明 CGH,我们就得到原来不存在的(或原来只 有数学形式的)参考波面 WAR,并用它对非 球面光学表面进行零差检验(null-testing)。

二、实验装置

实验光路和实验装置分别示于图 2 和图 3。这是改进型的 Twyman-Green 干涉 仪。 He-Ne 激光平行光束照明 CGH,产生 0 阶、 1 阶和高阶衍射波。利用成象透镜 L 和狭缝 空间滤波器 F 滤出正 1 阶衍射波,它就是我 们所需要的参考波面 WAR。

图 3 实验装置

发散透镜 D 将平行光束先会聚后再发 散,成为球面波。此球面波被被测非球面光 学表面反射,成为返回波面 WAS。WAS 携 带有加工误差,此时 WAR 对 WAS 进行零 差检验,产生直干涉条纹。条纹的弯曲、疏密 和波动就反映了被测非球面镜的加工误差。

三、计算公式

参考图 4, 对于抛物面镜, 有

$$Z = \frac{x^2 + y^2}{2R} \tag{2}$$

具有相同顶点曲率半径 R 的球面方程

$$Z = \frac{x^2 + y^2}{2R} + \frac{(x^2 + y^2)^2}{8R^3} + \frac{(x^2 + y^2)^3}{16R^5} + \cdots$$
(3)

(3)式中的 R 值是可调的, 这就是离焦。因此 有

$$Z = \frac{x^2 + y^2}{2(R+d)} + \frac{(x^2 + y^2)^2}{8(R+d)^3} + \frac{(x^2 + y^2)^3}{16(R+d)^5} + \cdots$$
(4)

从式(4)中减去式(2),我们得到球面和抛物 面之间的面形差或矢高差:

$$\delta(x, y) = -\frac{d(x^2 + y^2)}{2R^2} + \frac{(x^2 + y^2)^2}{8(R+d)^3} + \frac{(x^2 + y^2)^3}{16(R+d)^5} + \cdots$$
(5)

并有返回波面

为

· 43 ·

$$WAS(x, y) = -2\delta(x, y)$$

= $\frac{d(x^2+y^2)}{R^2} - \frac{(x^2+y^2)^2}{4(R+d)^3}$
 $- \frac{(x^2+y^2)^3}{8(R+d)^5} - \cdots$ (6)

即

 $WAS(x, y) = A_2(x^2 + y^2) + A_4(x^2 + y^2)^2 + A_6(x^2 + y^2)^3 + \cdots$ (7)

负值表示光程滞后。

参看图 4。返回波面 WAS 在记录 平 面 上的位相分布记为 WAS(x, y), (以 波 长 数 表示)。我们有

 $WAS(x, y)_{p} = -WAS(x, y)$ (8) 位相参考零点是镜面的顶点。负值表示位相 滞后,正值表示位相超前。

倾斜入射平面波 WO 在记录平面上的位相分布为 Ao+A1x,也以波长数表示。干涉条纹的峰值位置应满足下式

$$\begin{aligned} & = A_1 x - W A S(x, y)_p \\ & = A_0 + A_1 x + A_2 (x^2 + y^2) \\ & + A_4 (x^2 + y^2)^2 + A_6 (x^2 + y^2)^3 \\ & + \cdots \\ & = m \cdot \lambda \end{aligned}$$

(9)

式中 m 是整数,即条纹序号。这就是我们所 需要的计算公式。

在推导式(6)时,我们假定:

(1) 返回光线沿入射光路原路返回,

(2) 以矢高差代替径向差。 很明显,式(6)是一近似计算公式,它只能在 一定范围内代替精确的计算公式。

式(7)中各系数的选择依据如下:

1. A₂=d/R² 这是离焦项。引入此项 是为了使返回波面 WAS 的波面象差变得 平 缓,降低它的变化速率。这样 CGH 用较少的 取样率同样可以达到较高精度的再 现 波 面, 并有利于各衍射级的隔离。 图 5 表明 A₂ 对 返回波面的影响。

2. A₀+A₁x 这是载波项。 A₁的值要 取得足够大,从而保证将 CGH 产生的各衍

. 44 .

射级分开。应当使 A_1 满足下式:

$$A_1 > 3\left(\left|\frac{\partial WAS}{\partial x}\right|\right)_{\max}$$
 (10)

四、实际制作的 CGH

我们要测试的非球面镜是一抛物面镜。 R=2米,直径 $\phi=20$ 厘米。计算表明,在这 种情况下,能够使用近似公式(6)。近似计算 与精确计算相比较的结果列于表 1。

(R+d)毫米	波面最大误差 λ	条纹最大位移(毫米)
2000	0.025	0.0097
2001.25	0.006	0.0048
2001.9	0.002	0.0025

表1 近似计算引入的误差

我们选用的离焦曲线就是图 5 上的曲线 (A)。

采用以下三种方法进行计算和绘图。

1. 扫描法和手工绘图。

2. 插值法。

3. 条纹序号法(方法如下)。

参看图 6。从非球面镜返回的波面是圆 对称的。我们可以把位相分布写成:

WAS(x, y)_p=WAS(FR[n])_p (11) 式中 FR[n]是取样半径。首先计算出 WAS (FR[n])_p的 n 个值,存入存储器。第m根干 涉条纹的各点坐标值应满足式(12)和(13).

 $\begin{cases} A_0 + A_1 x - WAS(FR[n])_p = m \ (12) \\ y = \sqrt{FR[n]^2 - x^2} \ (13) \end{cases}$

固定干涉条纹序号 m,由式(12)求出 x。如果下式成立:

|x|≤FR[n] (14) 则保留这个 x 值, 并用式 (13)求出对应的 Y 值。由此, 我们求出第m根干涉条纹上各点

图6 用条纹序号法计算第m根条纹的轨迹

的精确位置。

图7、8就是干涉型CGH。

为了测出 $\frac{\lambda}{20}$ 的镜面加工误差, CGH 上 每根条纹的位置误差应小于 $\frac{1}{10}$ 条纹间距。 这是依靠画图仪本身的精度和控制作图尺寸 来保证的。

五、CGH 再现波前的精度检验、 衍射效率和检验非球面镜的结果

对 CGH 产生的参考波面 WAR 的 精度 检验有三种方法,测试光路如图 9 所示。所 得结果分别示于图 10~13。我们制作的 CGH 产生的参考波面 WAR 的精度达到了 $\frac{\lambda}{8} - \frac{\lambda}{10}$ 。

. 45 .

实测 CGH 的衍射效率 n为

 $\eta = \frac{\overline{\text{L}} - \Im \widehat{\text{H}} \widehat{\text{H}} \widehat{\text{H}} \widehat{\text{H}} \widehat{\text{H}} = 7\%$

这个值和不漂白的光学全息图的衍射效率相近。

图 10 CGH 再现波面的 同轴干涉检验

图 11 CGH 再现波面的 倾斜干涉检验

图 12 CGH 再现波面 倾斜干涉标准图

面的互检

图 14 被测抛物面镜 的常规干涉检验

六、结论和展望

在 CGH 方法中, 干涉场明亮清晰、视场 大、并且是定量测量的零差检验法。CGH 目 前已达到的再现波面 $\frac{\lambda}{10}$ 的精度也能满足大 部分非球面光学设计和加工的要求。如能解 决若干工艺问题, 那么用 CGH 检验天文望远 镜镜面确是一个有意义和吸引人的工作。 抛物面镜 抛物面镜

参加过本工作的还有路敦武、顾景滨、顾 欣斌等同志,在此表示感谢。

参考文献

- [1] A. W. Lohmann, D. P. Paris; Appl.Opt., 1967, 6, 739.
- [2] A. J. MacGovern, J. C. Wyant; Appl. Opt., 1971, 10, 619.
- [3] K. G. Birch, F. J. Green; J. Phys. D: Appl. Phys., 1972, 5, 1982.
- [4] Toyohiko Yotagai, Hiroyishi Saito; Appl. Opt., 1978, 17, 558.